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We find analytically and numerically that there exist infinite degeneracies in the ground state vortex con-
figurations of a uniformly frustrate®Y model on a square lattice for cases of frustratibad /6, 1/7, 1/8, and
1/10. More generally, we could also obtain a class of exact solutions for the phase configurations correspond-
ing to the cases of =1/q=1/(2m) with an integerm=3 of which the above cases ofi=3, 4, and 5
correspond to the true ground states. These states are analogous to the staircase solutions originally given by
Halsey[Phys. Rev. B31, 5728(1985], which, however, are relevant in a different regime of the frustration
parametefor vortex density. In these quasistaircase states, all the gauge-invariant phase differences are found
to be integer multiples ofr/2g. The supercurrents are conserved at each node in a trivial manner by separate
channels. The infinite ground state degeneracy is preserved in the case of an arbitrary screening length for the
corresponding lattice Coulomb gas.
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[. INTRODUCTION (ij) denotes nearest neighbor pairs. The bond argle
=(2elfic) [IA-dr is proportional to the line integral of the
) : L ..~ magnetic vector potentiaﬁ along the bond connecting sites
work for understanding various equilibrium and nonequmb-i andj. A;; satisfies the constraidt; ;  pA;; = 27 where the

rium properties of st_at|st|cal systems_wnh competing inter-g 1. is over (,j) belonging to the unit plaquett Since one
actions. Typically, existence of frustration strongly influences

the low temperature properties in such a way that the symc@n map the phase angionto a planarXy spin via S,
metry of the Hamiltonian is changed and a complex |0WE(c956i ,siné), the above model Hamiltonian is also called
energy landscape is generated with many metastable stat@sUniformly frustratedy model. , o
In these frustrated systems, it is important to identify the ©ON€ characteristic feature of the system is a sensitive de-
ground and low lying excited states in order to understand€ndence of physical properties on the rationality of the frus-
the thermodynamic properties of the systems. tration parametef= p/q[3,5,6]. In spite of various resear_ch

The uniformly frustratecKY (UFXY) model on a regular efforts during the past two depad_es or so, understanding of
planar lattice is one example of the simplest frustrated SySt_he low temperature t_)ehawor is still not complete for general
tems where the strength of frustration can be continuously&!ues of the frustratiofi=p/q. Even the ground state con-
varied[3]. It provides an excellent theoretical laboratory for figurations are known exactly only for some limited values
studying the commensuration-incommensuration effect andf f- Via Villain transformation(7], the above UKY model
phase transitions as the magnitude of the frustration is va©an be transformed into the two-dimensional lattice coulomb
ied. One important physical realization can be found in thedas(LCG) [8], which is described by the following Hamil-
two-dimensional Josephson junction arrays under a unifornfPnian,
magnetic field[4]. Periodic Josphson junction arrag&lA) 1
under a uniform magnetic field exhibit very rich phenomena Heo== 2 aiG(rij)q; 2)
as the strength of the magnetic field is varied. For the sim- 2 7]
plest case of a JJA on a square lattice or a triangular lattice
with nearest neighbor Josephson coupling, an important pavherer;; is the distance between the siteandj, and the
rameter determining the frustration is the ratiof the (ex- ~ magnitude of chargey; at sitei can take either (+f) or
terna) magnetic fluxd piercing a unit plaquette and the —f which also correspond respectively to a vortex and an
superconducting quantum fluk,=hc/2e. antivortex in the UKY model. The lattice Green’s function

In terms of the superconducting phases, the Hamiltonia®(r'i;) solves the equation
can be written as

) 1
I

whereA? is the discrete lattice Laplacian aids the screen-
where 6; represents the phase variable of the superconductng length that, in normal case of no screening, is set to an
ing order parameter at site J is the coupling energy and infinity. For the case of usual Villain transformation of the

Frustration[1,2] provides an important conceptual frame-

G(rij)=—275 0, (€)
H({a})=—a(i2j) cog 6;— 0,— Ayj) 1)

1063-651X/2003/6(#)/04612@6)/$20.00 67 046120-1 ©2003 The American Physical Society



MYOUNG KWAN KO et al. PHYSICAL REVIEW E 67, 046120 (2003

0, 6, 65 6, The existence of the half-filled diagonals together with
e e that of the constant current staircase are the essential features
I 5 that enable the infinitely degenerate vortex configurations.
e B B " We also find that the gauge-invariant phase differences are
; all integer multiples ofr/2q, i.e., they may be called ratio-
i nal stateqor phase configurationsDue to the property of
Lo fo channel-wise conservation of the supercurrents, the gauge-
invariant phase configurations also satisfy exactly the linear-
FIG. 1. The quasi-one-dimensional staircase state: gaugdzed(Gaussiahversions of the current conservation equation
invariant phase differences along a given staircase are constant. modulo 27. We also find that the same infinite degeneracy
holds in the corresponding LCG for an arbitrary value of the
UFXY model, we have\=. On a square lattice with peri- screening length., which probably comes from the above-
odic boundary conditions3(r) is given by mentioned Gaussian nature and rational property of the so-
lutions in the UKXY model.

GEKSY i
G(r)=- 7,
N &, 2—cosk,—cosk,+ 1/\

4 II. STAIRCASE STATES AND QUASISTAIRCASE STATES

Let us first work in the LCG picture of the vortices with

where k are the allowed wave vectors withk, the energy function given in E@l). Since the vortex charges
=(2mn,/L), with n,=0,1,... -1 andN=L2 with lin- ~ are constrained to lie on the lattice sites only, the continuum

ear dimensiorL. In the case of infinite screening length, for Abrikosov (triangulaj configuration should be deformed to
large separation, one getsG(F)z “iInr accomodate the lattice constraints. Simplest cases correspond
In the case o'f URY model on a sq.uare lattice. the first to those where the ordered vortex structure forms a Bravais

systematic solutions were proposed by Halsey, which aréattice. Suppose that andb are the two(simple) unit Bra-
called staircase statég]. These states turn out to be the true V&S vectors out of which we can form the whole sites of the
ground state for some limited valuesfafiith simple rational ~ vortices. That s, Fn 0, =M@+ n,b, nq, n,= 0,%x1,
forms such af=1/2, 1/3, 2/5, 3/7, 3/8, etc. The staircase +2
states are characterized by quasi-one-dimensional curre
distribution where constant currents flow along the diagon

staircasegFig. 1). The phase configurations exhibit period- satisfy for the simple cases 6= 1/q is (due to the vortex

icity with g g unit cells. density condition the following[12,13:
In this work, we present another class of analytic solu- y n 912,13

+2,.... Now if we puta=(a;,a,) andb=(b;,b,), these
Bmponental, a,, by, b, all take integer values in units of
he lattice constant. We can see that the first condition to

tions that are analogous to the staircase states of Halsey. We f-l=q= |5>< 5| —|asb,—ayby). (5)
may call these states amiasistaircase stateFhese are so-
lutions for the cases of the frustration paraméterthe form Since the underlying lattice has a square geometry, we

of f=1/q with an even integeq=2m andm=3. We note  expect that the vortex lattice with highest symmetry would
again that the staircase states of Halsey are relevant in thgso exhibit a square lattice configuration. In those cases of
dense frustratlpn regime e.g., 15!$<;/2. On the other square vortex lattices, we haya|=|b| andaLlb, i.e., a?
hand, the quasistaircase states that will be presented here "’lf[%gzb§+b§ anda,b; +a,b,=0. Combining the above re-

relevant in the lower vortex density reginfe<=1/6. We ; : _ __
find that for the special cases H#1/6, 1/8 and 1/10, these lations, we can easily see th{=b,, a,=—b,. Therefore,

analytic quasistaircase states correspond to the true grour\lNde get

states. We could slightly extend the above solutions to the f‘1=q=a§+a§=b§+b§. (6)

cases of odd denominatogs=2m+1, m=3 and found nu-

merically that at least fof = 1/7 the ground state configura- The simplest solution to the above relationgis 2, f=1/2

tion can be represented by these solutifi®. with a;=a,=—b;=b,=1, which corresponds to the
Itis also found that, in contrast to the case of the staircasgheckerboard vortex pattern. The next simplest case corre-

states, quasistaircase states e?(hlblt infinite nontrivial de_ge%'ponds tog=5, f=1/5 with 5:(2,1) and5=(— 1,2). Fur-

eracies in the vortex configuratiofikl]. These states consist h ibl luti include. fa=8 f=1/8 with a

of parallel arrays of diagonal stripes that are half filled with er possibie solutions include, tar=o, Wi _a

positive vortices. In between these half-filled diagonals, there- (2,2) andb=(—2,2) and also, fog=18, f=1/18 with

exist diagonals that are emptin other words, filled with a=(3,3) andb=(—3,3).

negative vorticegFigs. 4—6. Except for the half-filled di- By relaxing the squareness constraint on the vortex lattice

agonals, all the gauge-invariant phase configurations follovgtructure, we can find all possible Bravais lattice configura-

the staircase form where, for each diagonal staircase, a giveions for an arbitrary case d&=1/q. However, each of these

single current flows from end to end. We can compare thiconfigurations is only one of the many possible solutions.

situation with of the Halsey’s staircase states where, for all ofVhether or not these solutiofsonfigurationg correspond to

the diagonal staircases, uniq(@epending on the staircgse the real ground state configurations should be determined by

constant currents are flowing. either numerical means or analytic arguments. The only sys-
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FIG. 2. The phase angles in the quasi-one-dimensional staircase
state. The twist angler determines the net current flow along the

. VISt FIG. 3. The configuration of gauge-invariant phase differences
staircase direction.

in the quasistaircase state fér=1/8. Four independent gauge-

invariant phase differences are shown with the corresponding bonds

tematic solutions are the staircase states given by H&#ey genoted by different line types. The plaquettes with positive vorti-
that turn out to be the true ground states only for some limzes are denoted by circles.

ited values off in the dense regime 1£&3f=<1/2.
dimensional vortex configuration where all the plaguettes on
A. Staircase states a given diagonal are occupied with the same vorticity. It can
Here, we briefly review Halsey’s staircase states. Halsey'®€ Shown that for a given value 6fp/q, the configuration

staircase states are characterized by quasi-one-dimensioffdjvorticity along the direction perpendicular to the staircase
distribution of supercurrents such that, along a given diago€cOmes equivalent to those states given by Hubpb4d

nal staircase, a constant supercurrent flows. In other word@nd also by Pokrovsky and UimifL5] derived from the
the gauge-invariant phase differences are constant along gPresentation of continued fraction.
given staircase. For concreteness, we work in a Landau

gauge for the magnetic vector potenti®(r) with A,=0, B. Quasistaircase states
Ay=Box. and®,=Bga’=f®y=(p/q)®,. Thus we have Now one can ask whether analogous solutions can be pos-
, sible for the case of=1/q with g>3, namely, in the inter-
A :z_eJ_J,&,dF: Z—WBoazxi=2wfxi ) mediate t.o Iow.vortex density regime, such that Braykt _
CJi Do tice) configuration corresponds to the ground states. To begin
with, consider the cases af an even number, that i
for (ij) along they direction (=x/a=0, 1, 2, ...), =2m, ma positive integer. In the case of the staircase solu-

while Ajj=0 for bonds {j) along thex direction. We put the  tions, diagonal stripes are either fully filled with positive
gauge-invariant phase differences along the horizontal bondgortices or else fully emptyi.e., fully filled with negative

(i.e., bonds along the direction as ¢, ¢, ...,¢q asin  vortices. We will show here that we can slightly modify the
the Fig. 1, where staircase states in such a way that the diagonal vortex stripes
are replaced by half-filled diagonals of vortices placed at
i=0i—06i-1, ®) regular intervals. Suppose that the periodicity of thertex

diagonals is equal ton, then the vortex density becomés
=1/g=1/(2m) because vortices are located every other
laquettes along the half-fillegrortex) diagonals. There are
WO questions to answer concerning this half-filled diagonal
states. First is whether one can find an analytic or semiana-
Iytic solution for this class of states.
If the answer is yes, then the second question would be
whether there exist cases when these solutions become
SiN(6,— 6, ,)=siM 6,.1— (6, +a)+2=f(i+1)], (9) (Stable ground states. We find that the answers to these ques-
tions are in the affirmative. Especially to the second ques-
which gives tion, we find that there are some cases where the quasistair-
case states form the ground states. Furthermore, these states
0= 01 1=[0;+1— (0T a)+2mf(i+1)]+27n (100  are shown to exhibit infinite degeneracies.
As shown in Fig. 3 we put an ansatz phase configuration

0, being the phase variable at site

We require an ansatataircase ansatzhat the configura-
tion of supercurrents be quasi-one-dimensional along a dia
onal direction that can be realized as in Fig. 2 with the in-
troduction of a uniform phase twist along a diagonal
direction. Now, by combining the current conservation for
each node and the vorticity constraints, we get

withn=0, +1, £2, ..., leading to such that the bonds on the diagonal staircases have constant
supercurrentgor gauge-invariant phase differengesxcept
(6,—6,_1)= & fitan. (11)  those on the staircases enveloping the half-filled vortex di-
2 agonals. At each node, four bonds meet and currents are

For each real value of the anglein the above equation, conserved trivially in separate channélsthe sense that we
we get a staircase state. However the state with vanishing neain separate the four bonds into two separate channels, each
current corresponds to the ground state configuration witlof which consists of two bonds such that the current along
minimum energy. This condition of energy minimum gives each channel is conserved. Now we denote the gauge-
al2=m/2q for g= even anda/2=0 for q= odd[9]. The invariant phase differences surrounding the vortex plaquette
resulting staircase state is characterized by quasi-onas ¢, . Similarly, ¢,, represents the phase differences per
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bond around the antivortex on the partially filled diagonal.
Now the remaining variables are the gauge-invariant
phase differences along the diagonal staircases denoted lig
b1,b2, ... . bm_o. The definition for these phase differ-
ences is such that positive phase differences denote positiv
currents in the direction of positiveaxis. That is, we have,
for example ¢;= 6; — 6; ., along the horizontal bonds on the
top layer whered; is the phase variable at site From the
vorticity condition of 2 ;). p(660—2mA;;)=1—f (—f) for
a positive vortex (a negative vortex we find that
¢,=—m(q—1)/2q and ¢,, = — (7/2q) satisfies the frustra- (@) (b)
tion constraints. Now we can also see that from vorticity
constraints, we get

FIG. 4. (a) Bravais and(b) non-Bravais ground state vortex
configurations (filled squares represent positive vorticeer f
27 (q-1)7m =1/6. Soliq Iineg are only guides to the spatial regularity of the
— = ———+2¢. 12 vortex configurations.
q 2q 2q
ing transported by one diagonal displacement which also re-
sults in a new configuration with the vortices on the trans-
ported side are correspondingly displaced exactly by one

Furthermore,¢; and ¢;,, are related by &;,,—2¢;
=47/2q or, ¢; 1= ¢;+ w/q from which we get

m(6—q) m(j—1) diagonal lattice constant. We can see that the total energy is
[— + , 1=12,...m=-2. (13 simply conserved in this process. This is because, by the
q q obvious definition of parallel phase transport, the change in

We could numerically confirm that these states correspond t§€"dy can occur only along the interface region separating
the real ground states for the cases ef1/6, 1/8, 1/10. By the two sides and the interfacial bonds simply change the

summing the gauge-invariant phase differences along thdirection of the current flow hence with no change in the

horizontal axis, we gefin the Landau gauge total the energy. _ _
Figure 4 shows the degenerate vortex configurations for

m-2 the quasistaircase statesfef 1/6, where Fig. 4a) represents
0(0,))—6(0,])=2(¢,+ ¢a,) +2 Z ¢i=—m. (14  the Bravais vortex lattice and Fig(l®) is an example out of

=1 infinitely many non-Bravais states. The energy per [s&e
Eq. (15)] is E(f=1/6)= —(2/3)J(1+ \/3/2). The case of
=1/8 is shown in Fig. 5. Here we find that there exist two
kinds of Bravais statggmigs. §a) and Jb)], one with square
shaped vortex lattice and the other with oblique vortex lat-
tice. Also shown is the case ¢&=1/10 in Fig. 6.

That is, the phase configuration is periodic with the period
2q lattice spacings along the horizontal axis. Similarly along
the vertical axis, we gedtaking the Landau gauge into con-
sideration 6(i,q)— 6(i,0)=0 or r(mod27) for q=6+4n
and gq=8+4n (n a non-negative integerrespectively.
Therefore, we conclude that for the casef 6f1/6 and 1/10,

the ground state configuration isqX ¢ periodic in phase lil. NUMERICAL RESULTS AND DISCUSSIONS

configuration, while that of =1/8 is 2qx2q periodic. We We performed Monte Carlo annealing simulations of both
could confirm this expectation numerically. The enefggr  {he URKY model and the LCG Hamiltonian. For the cases of
sitg) for these states are f=1/8 and 1/10, we could always obtain one of the degen-
m-2 erate vortex configurations corresponding to the quasistair-
E :__4‘] cos(Ew +co<l + E cose, case states as the lowest energy states. We could also confirm
q . i . . . .
q 2q 2q) =1 that the gauge-invariant phase configuration showed perfect
agreement with our analytical solutions for these cases. On
r{w(q_‘l)} the other hand, for the case b# 1/6, Monte Carlo anneal-
-4 -1 4 ing could not find any of the degenerate ordered configura-
T COS(W”) +C°S<E) T | tions given above. Beginning with disordered initial states,
sm( ﬁ) we always ended up with some disordered metastable con-

figuration, the energy of which is higher théhe predicted

(15 degenerate configurations given above. This is probably re-

Now, we also find that there exist a class of infinite num-lated to the characteristic glassy behavior of the system at
ber of states that are degenerate with the above staircase- 1/6 (see Ref[16]). In order to numerically find the true
states, which can be described as follows. First cut in half thground state in this case, we relied on a global optimization
square lattice of the system across a diagonal that bordersethod called the conformational space annealing method
any one of the half-filled diagonals. Then, we can easily se€l17,18. By using this method, we could identify the true
that we can take one of the two regions and perform parallejround state configuration fdr=1/6, which agrees with the
transport of that region by one diagonal displacement. Thaanalytic solution of the quasistaircase state.
is, all the gauge-invariant phase differences on one side be- One thing to note is that, even though our proof of infinite
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FIG. 7. The ground state vortex configuration fior 1/7 (a)
Bravais; (b) non-Bravais states. Solid lines are only guides to the
spatial regularity of the vortex configurations.

that there exist infinite degeneracies h@iso shown in Fig.
7). The infinite degeneracy can also be unders{d@diin the
corresponding frustrate&XY model in terms of diagonal
staircases in a manner analogous to the casés af6, 1/8,
and 1/10, but involves a more intricate combination of the
phase configurations df=1/6 andf=1/8, which we do not
() present here.

Next, we look into the case df=1/9 by means of LCG
methods and find that the lowest energy states have non-
Bravais vortex configurations as in Fig(aBthat has an en-
ergy slightly below the Bravais state configuration of Fig.
8(b). In this case, however, there exists no infinite degen-

o ) eracy in the vortex configurations.
degeneracy of quasistaircase states is based on the phaseyow, we investigate the nature of phase transitions in

configuration of UKY model, exactly the same degeneracythese systems. Since, in most cases, these systems are ex-
is found to be validhumericallyin the corresponding LCG  pected to undergo first order transitions, we apply the stan-
with the same value df Not just that, we could also confirm 44,4 histogram method®0]. Existence of first order transi-
that the same degeneracy holds for the general case of g near a specific temperature can be identified by double
arbitrary screening length. This nontrivial result can prob-  peaks in the energy histograms. The transition temperature
ably be understood by noting that for an even positive  can pe determined as the temperature for which the areas
integer, the gauge-invariant phase differences of the quasigmger the two peaks are equal to each offrethe thermo-
taircase states take integer multiplesmf2q and also that  gynamic limit. We briefly mentioned above that simple
these phases satisfy simple Gaussian equalit®is Monte Carlo annealing simulations could not find any of the
Next, we turn to the cases 6F1/q with odd integersy  ground state configurations in the casefef1/6. An inter-
=7. We first present the result of annealing simulations Ofgsting result in connection with this fact is that, for this case,
LCG with f=1/7. Here we find that the ground state vorteX\ye cannot discern a clear signature of first order transition in

configurations fof = 1/7 consist of alternatingly 1/6-like and the energy histogram as the system size incregHs(Fig.
1/8-like diagonal vortex configuratiorifig. 7). We also find

FIG. 5. Bravais ground states with) square andb) parallel-
epiped patterns as well aE) non-Bravais ground state fof
=1/8. Solid lines are only guides to the spatial regularity of the
vortex configurations.

(b)

a b
@ ® FIG. 8. Low energy vortex configurations fér=1/9 (a) non-
FIG. 6. The ground state vortex configurations fer1/10. (a) Bravais and(b) Bravais states, among which the former corre-
Bravais state antb) a non-Bravais state. Solid lines are only guides sponds to the ground state. Solid lines are only guides to the spatial
to the spatial regularity of the vortex configurations. regularity of the vortex configurations.
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1x10°

5
107 I ® L @' L=32" T=0.0286] F O 14 T=00279
. 105_ | 4x10° [~ L=18 1.5)(106 f=1/8 4 8x10° [ f=1/8 __
1 ] T=0.0236 i 1 ex10’f 1
= X
1x10° {20’ £=1/6 o 4x10°F -
| 0.5x10° ] 1 a0’k J
] ) 1 | ] I
000005 0.1 00 0.094 0,096 0,098 00008 0085 9908 0.085
s | @ 1" @ Lsed . .
L L=24 |30’ 8 FIG. 10. The energy histogram fdr=1/8 with (a) L=32 and
ax10' T=0.021 a10” ];Z?/%z_ (b) L=48. The energ¥ (horizontal axi$ is in dimensionless units
T f=1/6 {1 ] as in Fig. 9.
2x10' [~ 1 1x0'F n e
[ T [ | In summary, we showed that there exist infinite ground
0.0°5 002 (])-::096 0.008 00004 0.096 state degeneracies for selected value$ iof the uniformly

frustratedXY model and LCG on a square lattice. This hap-
FIG. 9. The energy histogram fdr=1/6 with (a) L=6, () L Pens especially for the values 6f1/q with q=6,7,8,10.

=12, (c) L=24, and(d) L =36. The energf (horizontal axisisin e showed that these states, in the phase representation of

dimensionless units where the units of charges are simply put equéile UFXY model, can be described analytically as quasistair-

to unity [see Eq(2) in the texd. case states.
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