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Vortex patterns and infinite degeneracy in the uniformly frustrated XY models and lattice
Coulomb gas
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We find analytically and numerically that there exist infinite degeneracies in the ground state vortex con-
figurations of a uniformly frustratedXY model on a square lattice for cases of frustrationsf 51/6, 1/7, 1/8, and
1/10. More generally, we could also obtain a class of exact solutions for the phase configurations correspond-
ing to the cases off 51/q51/(2m) with an integerm>3 of which the above cases ofm53, 4, and 5
correspond to the true ground states. These states are analogous to the staircase solutions originally given by
Halsey@Phys. Rev. B31, 5728~1985!#, which, however, are relevant in a different regime of the frustration
parameter~or vortex density!. In these quasistaircase states, all the gauge-invariant phase differences are found
to be integer multiples ofp/2q. The supercurrents are conserved at each node in a trivial manner by separate
channels. The infinite ground state degeneracy is preserved in the case of an arbitrary screening length for the
corresponding lattice Coulomb gas.

DOI: 10.1103/PhysRevE.67.046120 PACS number~s!: 64.60.Cn, 75.10.Hk, 74.81.Fa
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I. INTRODUCTION

Frustration@1,2# provides an important conceptual fram
work for understanding various equilibrium and nonequil
rium properties of statistical systems with competing int
actions. Typically, existence of frustration strongly influenc
the low temperature properties in such a way that the s
metry of the Hamiltonian is changed and a complex l
energy landscape is generated with many metastable st
In these frustrated systems, it is important to identify t
ground and low lying excited states in order to understa
the thermodynamic properties of the systems.

The uniformly frustratedXY (UFXY) model on a regular
planar lattice is one example of the simplest frustrated s
tems where the strength of frustration can be continuou
varied@3#. It provides an excellent theoretical laboratory f
studying the commensuration-incommensuration effect
phase transitions as the magnitude of the frustration is
ied. One important physical realization can be found in
two-dimensional Josephson junction arrays under a unif
magnetic field@4#. Periodic Josphson junction arrays~JJA!
under a uniform magnetic field exhibit very rich phenome
as the strength of the magnetic field is varied. For the s
plest case of a JJA on a square lattice or a triangular la
with nearest neighbor Josephson coupling, an important
rameter determining the frustration is the ratiof of the ~ex-
ternal! magnetic fluxF piercing a unit plaquette and th
superconducting quantum fluxF05hc/2e.

In terms of the superconducting phases, the Hamilton
can be written as

H~$u%!52J(
( i j )

cos~u i2u j2Ai j ! ~1!

whereu i represents the phase variable of the supercond
ing order parameter at sitei, J is the coupling energy and
1063-651X/2003/67~4!/046120~6!/$20.00 67 0461
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( i j ) denotes nearest neighbor pairs. The bond angleAi j

5(2e/\c)* i
jAW •drW is proportional to the line integral of the

magnetic vector potentialAW along the bond connecting site
i andj. Ai j satisfies the constraint( i , j PPAi j 52p f where the
sum is over (i , j ) belonging to the unit plaquetteP. Since one
can map the phase angleu onto a planarXY spin via SW i
[(cosui ,sinui), the above model Hamiltonian is also calle
a uniformly frustratedXY model.

One characteristic feature of the system is a sensitive
pendence of physical properties on the rationality of the fr
tration parameterf 5p/q @3,5,6#. In spite of various research
efforts during the past two decades or so, understandin
the low temperature behavior is still not complete for gene
values of the frustrationf 5p/q. Even the ground state con
figurations are known exactly only for some limited valu
of f. Via Villain transformation@7#, the above UFXY model
can be transformed into the two-dimensional lattice coulo
gas~LCG! @8#, which is described by the following Hamil
tonian,

HCG5
1

2 (
i j

qiG~r i j !qj ~2!

where r i j is the distance between the sitesi and j, and the
magnitude of chargeqi at site i can take either (12 f ) or
2 f which also correspond respectively to a vortex and
antivortex in the UFXY model. The lattice Green’s function
G(r i j ) solves the equation

S D22
1

l2DG~r i j !522pd r i j ,0
, ~3!

whereD2 is the discrete lattice Laplacian andl is the screen-
ing length that, in normal case of no screening, is set to
infinity. For the case of usual Villain transformation of th
©2003 The American Physical Society20-1
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UFXY model, we havel5`. On a square lattice with peri
odic boundary conditions,G(r ) is given by

G~rW !5
p

N (
kWÞ0

eik•r21

22coskx2cosky11/l2 , ~4!

where k are the allowed wave vectors withkm
5(2pnm /L), with nm50,1, . . . ,L21 andN5L2 with lin-
ear dimensionL. In the case of infinite screening length, f
large separationr, one getsG(rW).2 ln r.

In the case of UFXY model on a square lattice, the fir
systematic solutions were proposed by Halsey, which
called staircase states@9#. These states turn out to be the tr
ground state for some limited values off with simple rational
forms such asf 51/2, 1/3, 2/5, 3/7, 3/8, etc. The stairca
states are characterized by quasi-one-dimensional cu
distribution where constant currents flow along the diago
staircases~Fig. 1!. The phase configurations exhibit perio
icity with q3q unit cells.

In this work, we present another class of analytic so
tions that are analogous to the staircase states of Halsey
may call these states asquasistaircase states. These are so-
lutions for the cases of the frustration parameterf in the form
of f 51/q with an even integerq52m and m>3. We note
again that the staircase states of Halsey are relevant in
dense frustration regime e.g., 1/3< f <1/2. On the other
hand, the quasistaircase states that will be presented her
relevant in the lower vortex density regimef ,51/6. We
find that for the special cases off 51/6, 1/8 and 1/10, thes
analytic quasistaircase states correspond to the true gr
states. We could slightly extend the above solutions to
cases of odd denominatorsq52m11, m>3 and found nu-
merically that at least forf 51/7 the ground state configura
tion can be represented by these solutions@10#.

It is also found that, in contrast to the case of the stairc
states, quasistaircase states exhibit infinite nontrivial deg
eracies in the vortex configurations@11#. These states consis
of parallel arrays of diagonal stripes that are half filled w
positive vortices. In between these half-filled diagonals, th
exist diagonals that are empty~in other words, filled with
negative vortices~Figs. 4–6!. Except for the half-filled di-
agonals, all the gauge-invariant phase configurations fol
the staircase form where, for each diagonal staircase, a g
single current flows from end to end. We can compare
situation with of the Halsey’s staircase states where, for a
the diagonal staircases, unique~depending on the staircase!
constant currents are flowing.

FIG. 1. The quasi-one-dimensional staircase state: ga
invariant phase differences along a given staircase are constan
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The existence of the half-filled diagonals together w
that of the constant current staircase are the essential fea
that enable the infinitely degenerate vortex configuratio
We also find that the gauge-invariant phase differences
all integer multiples ofp/2q, i.e., they may be called ratio
nal states~or phase configurations!. Due to the property of
channel-wise conservation of the supercurrents, the ga
invariant phase configurations also satisfy exactly the line
ized~Gaussian! versions of the current conservation equati
modulo 2p. We also find that the same infinite degenera
holds in the corresponding LCG for an arbitrary value of t
screening lengthl, which probably comes from the above
mentioned Gaussian nature and rational property of the
lutions in the UFXY model.

II. STAIRCASE STATES AND QUASISTAIRCASE STATES

Let us first work in the LCG picture of the vortices wit
the energy function given in Eq.~1!. Since the vortex charge
are constrained to lie on the lattice sites only, the continu
Abrikosov ~triangular! configuration should be deformed t
accomodate the lattice constraints. Simplest cases corres
to those where the ordered vortex structure forms a Bra
lattice. Suppose thataW andbW are the two~simple! unit Bra-
vais vectors out of which we can form the whole sites of t
vortices. That is, rWn1 ,n2

5n1aW 1n2bW , n1 , n25 0,61,

62, . . . . Now if we putaW 5(a1 ,a2) andbW 5(b1 ,b2), these
componentsa1 , a2 , b1 , b2 all take integer values in units o
the lattice constant. We can see that the first condition
satisfy for the simple cases off 51/q is ~due to the vortex
density condition! the following @12,13#:

f 215q5uaW 3bW u5ua1b22a2b1u. ~5!

Since the underlying lattice has a square geometry,
expect that the vortex lattice with highest symmetry wou
also exhibit a square lattice configuration. In those case
square vortex lattices, we haveuaW u5ubW u and aW'bW , i.e., a1

2

1a2
25b1

21b2
2 anda1b11a2b250. Combining the above re

lations, we can easily see thata15b2 , a252b1. Therefore,
we get

f 215q5a1
21a2

25b1
21b2

2 . ~6!

The simplest solution to the above relation isq52, f 51/2
with a15a252b15b251, which corresponds to the
checkerboard vortex pattern. The next simplest case co
sponds toq55, f 51/5 with aW 5(2,1) andbW 5(21,2). Fur-
ther possible solutions include, forq58, f 51/8 with aW

5(2,2) andbW 5(22,2) and also, forq518, f 51/18 with
aW 5(3,3) andbW 5(23,3).

By relaxing the squareness constraint on the vortex lat
structure, we can find all possible Bravais lattice configu
tions for an arbitrary case off 51/q. However, each of these
configurations is only one of the many possible solutio
Whether or not these solutions~configurations! correspond to
the real ground state configurations should be determined
either numerical means or analytic arguments. The only s

e-
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tematic solutions are the staircase states given by Halse@9#
that turn out to be the true ground states only for some l
ited values off in the dense regime 1/3< f <1/2.

A. Staircase states

Here, we briefly review Halsey’s staircase states. Halse
staircase states are characterized by quasi-one-dimens
distribution of supercurrents such that, along a given dia
nal staircase, a constant supercurrent flows. In other wo
the gauge-invariant phase differences are constant alo
given staircase. For concreteness, we work in a Lan
gauge for the magnetic vector potentialAW (rW) with Ax50,
Ay5B0x. andF0[B0a25 f F05(p/q)F0. Thus we have

Ai j 5
2e

\cEi

j

AW •drW5
2p

F0
B0a2xi52p f xi ~7!

for ( i j ) along they direction (xi[x/a50, 1, 2, . . . ),
while Ai j 50 for bonds (i j ) along thex direction. We put the
gauge-invariant phase differences along the horizontal bo
~i.e., bonds along thex direction! as f1 , f2 , . . . ,fq as in
the Fig. 1, where

f i[u i2u i 21 , ~8!

u i being the phase variable at sitei.
We require an ansatz~staircase ansatz! that the configura-

tion of supercurrents be quasi-one-dimensional along a d
onal direction that can be realized as in Fig. 2 with the
troduction of a uniform phase twista along a diagonal
direction. Now, by combining the current conservation
each node and the vorticity constraints, we get

sin~u i2u i 11!5sin@u i 112~u i1a!12p f ~ i 11!#, ~9!

which gives

u i2u i 115@u i 112~u i1a!12p f ~ i 11!#12pn ~10!

with n50, 61, 62, . . . , leading to

~u i2u i 21!5
a

2
2p f i 1pn. ~11!

For each real value of the anglea in the above equation
we get a staircase state. However the state with vanishing
current corresponds to the ground state configuration w
minimum energy. This condition of energy minimum giv
a/25p/2q for q5 even anda/250 for q5 odd @9#. The
resulting staircase state is characterized by quasi-o

FIG. 2. The phase angles in the quasi-one-dimensional stair
state. The twist anglea determines the net current flow along th
staircase direction.
04612
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dimensional vortex configuration where all the plaquettes
a given diagonal are occupied with the same vorticity. It c
be shown that for a given value off 5p/q, the configuration
of vorticity along the direction perpendicular to the stairca
becomes equivalent to those states given by Hubbard@14#
and also by Pokrovsky and Uimin@15# derived from the
representation of continued fraction.

B. Quasistaircase states

Now one can ask whether analogous solutions can be
sible for the case off 51/q with q.3, namely, in the inter-
mediate to low vortex density regime, such that Bravais~lat-
tice! configuration corresponds to the ground states. To be
with, consider the cases ofq an even number, that is,q
52m, m a positive integer. In the case of the staircase so
tions, diagonal stripes are either fully filled with positiv
vortices or else fully empty~i.e., fully filled with negative
vortices!. We will show here that we can slightly modify th
staircase states in such a way that the diagonal vortex str
are replaced by half-filled diagonals of vortices placed
regular intervals. Suppose that the periodicity of the~vortex!
diagonals is equal tom, then the vortex density becomesf
51/q51/(2m) because vortices are located every oth
plaquettes along the half-filled~vortex! diagonals. There are
two questions to answer concerning this half-filled diago
states. First is whether one can find an analytic or semia
lytic solution for this class of states.

If the answer is yes, then the second question would
whether there exist cases when these solutions bec
~stable! ground states. We find that the answers to these q
tions are in the affirmative. Especially to the second qu
tion, we find that there are some cases where the quasis
case states form the ground states. Furthermore, these s
are shown to exhibit infinite degeneracies.

As shown in Fig. 3 we put an ansatz phase configurat
such that the bonds on the diagonal staircases have con
supercurrents~or gauge-invariant phase differences!, except
those on the staircases enveloping the half-filled vortex
agonals. At each node, four bonds meet and currents
conserved trivially in separate channels~in the sense that we
can separate the four bonds into two separate channels,
of which consists of two bonds such that the current alo
each channel is conserved. Now we denote the gau
invariant phase differences surrounding the vortex plaqu
as fv . Similarly, fav represents the phase differences p

se

FIG. 3. The configuration of gauge-invariant phase differen
in the quasistaircase state forf 51/8. Four independent gauge
invariant phase differences are shown with the corresponding bo
denoted by different line types. The plaquettes with positive vo
ces are denoted by circles.
0-3
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bond around the antivortex on the partially filled diagona
Now the remaining variables are the gauge-invari

phase differences along the diagonal staircases denote
f1 ,f2 , . . . ,fm22. The definition for these phase diffe
ences is such that positive phase differences denote pos
currents in the direction of positivex axis. That is, we have
for example,f i[u i2u i 11 along the horizontal bonds on th
top layer whereu i is the phase variable at sitei. From the
vorticity condition of ( ( i j )PP(du22pAi j )512 f (2 f ) for
a positive vortex ~a negative vortex!, we find that
fv52p(q21)/2q andfav52(p/2q) satisfies the frustra
tion constraints. Now we can also see that from vortic
constraints, we get

2p

q
5

~q21!p

2q
2

p

2q
12f1 . ~12!

Furthermore,f i and f i 11 are related by 2f i 1122f i
54p/2q or, f i 115f i1p/q from which we get

f j5
p~62q!

4q
1

p~ j 21!

q
, j 51,2, . . . ,m22. ~13!

We could numerically confirm that these states correspon
the real ground states for the cases off 51/6, 1/8, 1/10. By
summing the gauge-invariant phase differences along
horizontal axis, we get~in the Landau gauge!

u~0,j !2u~q, j !52~fv1fav!12 (
i 51

m22

f i52p. ~14!

That is, the phase configuration is periodic with the per
2q lattice spacings along the horizontal axis. Similarly alo
the vertical axis, we get~taking the Landau gauge into con
sideration! u( i ,q)2u( i ,0)50 or p(mod2p) for q5614n
and q5814n (n a non-negative integer! respectively.
Therefore, we conclude that for the case off 51/6 and 1/10,
the ground state configuration is 2q3q periodic in phase
configuration, while that off 51/8 is 2q32q periodic. We
could confirm this expectation numerically. The energy~per
site! for these states are

Eq5
24J

q FcosS q21

2q
p D1cosS p

2qD1 (
i 51

m22

cosf i G
5

24J

q F cosS q21

2q
p D1cosS p

2qD1

sinFp ~q24!

4q G
sinS p

2qD G .

~15!
Now, we also find that there exist a class of infinite nu

ber of states that are degenerate with the above stair
states, which can be described as follows. First cut in half
square lattice of the system across a diagonal that bor
any one of the half-filled diagonals. Then, we can easily
that we can take one of the two regions and perform para
transport of that region by one diagonal displacement. T
is, all the gauge-invariant phase differences on one side
04612
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ing transported by one diagonal displacement which also
sults in a new configuration with the vortices on the tran
ported side are correspondingly displaced exactly by
diagonal lattice constant. We can see that the total energ
simply conserved in this process. This is because, by
obvious definition of parallel phase transport, the change
energy can occur only along the interface region separa
the two sides and the interfacial bonds simply change
direction of the current flow hence with no change in t
total the energy.

Figure 4 shows the degenerate vortex configurations
the quasistaircase states off 51/6, where Fig. 4~a! represents
the Bravais vortex lattice and Fig. 4~b! is an example out of
infinitely many non-Bravais states. The energy per site@see
Eq. ~15!# is E( f 51/6)52(2/3)J(11A3/2). The case off
51/8 is shown in Fig. 5. Here we find that there exist tw
kinds of Bravais states@Figs. 5~a! and 5~b!#, one with square
shaped vortex lattice and the other with oblique vortex l
tice. Also shown is the case off 51/10 in Fig. 6.

III. NUMERICAL RESULTS AND DISCUSSIONS

We performed Monte Carlo annealing simulations of bo
the UFXY model and the LCG Hamiltonian. For the cases
f 51/8 and 1/10, we could always obtain one of the deg
erate vortex configurations corresponding to the quasis
case states as the lowest energy states. We could also co
that the gauge-invariant phase configuration showed per
agreement with our analytical solutions for these cases.
the other hand, for the case off 51/6, Monte Carlo anneal-
ing could not find any of the degenerate ordered configu
tions given above. Beginning with disordered initial stat
we always ended up with some disordered metastable
figuration, the energy of which is higher than~the predicted!
degenerate configurations given above. This is probably
lated to the characteristic glassy behavior of the system
f 51/6 ~see Ref.@16#!. In order to numerically find the true
ground state in this case, we relied on a global optimizat
method called the conformational space annealing met
@17,18#. By using this method, we could identify the tru
ground state configuration forf 51/6, which agrees with the
analytic solution of the quasistaircase state.

One thing to note is that, even though our proof of infin

FIG. 4. ~a! Bravais and~b! non-Bravais ground state vorte
configurations ~filled squares represent positive vortices! for f
51/6. Solid lines are only guides to the spatial regularity of t
vortex configurations.
0-4
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degeneracy of quasistaircase states is based on the p
configuration of UFXY model, exactly the same degenera
is found to be validnumerically in the corresponding LCG
with the same value off. Not just that, we could also confirm
that the same degeneracy holds for the general case o
arbitrary screening lengthl. This nontrivial result can prob
ably be understood by noting that forq an even positive
integer, the gauge-invariant phase differences of the qua
taircase states take integer multiples ofp/2q and also that
these phases satisfy simple Gaussian equations@19#.

Next, we turn to the cases off 51/q with odd integersq
>7. We first present the result of annealing simulations
LCG with f 51/7. Here we find that the ground state vort
configurations forf 51/7 consist of alternatingly 1/6-like an
1/8-like diagonal vortex configurations~Fig. 7!. We also find

FIG. 5. Bravais ground states with~a! square and~b! parallel-
epiped patterns as well as~c! non-Bravais ground state forf
51/8. Solid lines are only guides to the spatial regularity of t
vortex configurations.

FIG. 6. The ground state vortex configurations forf 51/10. ~a!
Bravais state and~b! a non-Bravais state. Solid lines are only guid
to the spatial regularity of the vortex configurations.
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that there exist infinite degeneracies here~also shown in Fig.
7!. The infinite degeneracy can also be understood@10# in the
corresponding frustratedXY model in terms of diagona
staircases in a manner analogous to the cases off 51/6, 1/8,
and 1/10, but involves a more intricate combination of t
phase configurations off 51/6 andf 51/8, which we do not
present here.

Next, we look into the case off 51/9 by means of LCG
methods and find that the lowest energy states have n
Bravais vortex configurations as in Fig. 8~a! that has an en-
ergy slightly below the Bravais state configuration of F
8~b!. In this case, however, there exists no infinite deg
eracy in the vortex configurations.

Now, we investigate the nature of phase transitions
these systems. Since, in most cases, these systems ar
pected to undergo first order transitions, we apply the st
dard histogram methods@20#. Existence of first order transi
tion near a specific temperature can be identified by dou
peaks in the energy histograms. The transition tempera
can be determined as the temperature for which the a
under the two peaks are equal to each other~in the thermo-
dynamic limit!. We briefly mentioned above that simp
Monte Carlo annealing simulations could not find any of t
ground state configurations in the case off 51/6. An inter-
esting result in connection with this fact is that, for this ca
we cannot discern a clear signature of first order transition
the energy histogram as the system size increases@21# ~Fig.

FIG. 7. The ground state vortex configuration forf 51/7 ~a!
Bravais; ~b! non-Bravais states. Solid lines are only guides to
spatial regularity of the vortex configurations.

FIG. 8. Low energy vortex configurations forf 51/9 ~a! non-
Bravais and~b! Bravais states, among which the former corr
sponds to the ground state. Solid lines are only guides to the sp
regularity of the vortex configurations.
0-5
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MYOUNG KWAN KO et al. PHYSICAL REVIEW E 67, 046120 ~2003!
9!, which signals a sort of glassy features in this system
the temperature is lowered. On the other hand, for the cas
f 51/8 ~Fig. 10!, 1/10~data not shown!, we clearly see a firs
order transition nature in the histogram of the energy.

FIG. 9. The energy histogram forf 51/6 with ~a! L56, ~b! L
512, ~c! L524, and~d! L536. The energyE ~horizontal axis! is in
dimensionless units where the units of charges are simply put e
to unity @see Eq.~2! in the text#.
a
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In summary, we showed that there exist infinite grou
state degeneracies for selected values off in the uniformly
frustratedXY model and LCG on a square lattice. This ha
pens especially for the values off 51/q with q56,7,8,10.
We showed that these states, in the phase representatio
the UFXY model, can be described analytically as quasist
case states.
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